合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 如何改善水性涂料的耐水性?
> 破解固態(tài)電池界面之困:表面張力調(diào)控SiO?氣凝膠電解質(zhì)原位構(gòu)筑新策略
> 表面張力和接觸角的關(guān)系|寶玉石接觸角的測量結(jié)果和表面張力計算方法(一)
> ?氧化石墨烯基復合膜材料的制備方法、應(yīng)用開發(fā)及前景
> 塑料產(chǎn)品聚合物表面張力的本質(zhì)與測量方法
> 防治劍麻介殼蟲病,推薦劑量下藥劑的表面張力值多少最佳
> 烷基-β-D-吡喃木糖苷溶解性、表面張力、乳化性能等理化性質(zhì)研究(四)
> 水浸提提取肥皂莢皂苷水溶液最低表面張力及影響因素分析——摘要、材料與方法
> GA、WPI和T80復合乳液體系的脂肪消化動力學曲線、界面張力變化(三)
> 表面張力儀測試預熱具體方法
推薦新聞Info
-
> 不同礦漿濃度、粒度、伴生礦物、捕收劑和起泡劑對礦漿表面張力的影響(三)
> 不同礦漿濃度、粒度、伴生礦物、捕收劑和起泡劑對礦漿表面張力的影響(二)
> 不同礦漿濃度、粒度、伴生礦物、捕收劑和起泡劑對礦漿表面張力的影響(一)
> 長慶油田隴東地區(qū)的CQZP-1助排劑表/界面張力測量及現(xiàn)場應(yīng)用(三)
> 長慶油田隴東地區(qū)的CQZP-1助排劑表/界面張力測量及現(xiàn)場應(yīng)用(二)
> 長慶油田隴東地區(qū)的CQZP-1助排劑表/界面張力測量及現(xiàn)場應(yīng)用(一)
> 液膜斷裂點與電壓最大值在表面張力測量中的對比研究(二)
> 液膜斷裂點與電壓最大值在表面張力測量中的對比研究(一)
> ?表面張力與表面張力系數(shù)測量:概念、方法與科學意義
> 微重力下二極對非均勻旋轉(zhuǎn)磁場控制半浮區(qū)液橋表面張力對流的數(shù)值研究(下)
分子動力學模擬不同濃度仿生黏液-水界面的界面張力
來源:潤滑與密封 瀏覽 1169 次 發(fā)布時間:2025-04-14
隨著科學技術(shù)的迅速發(fā)展,仿生表面在體育、醫(yī)療、化學、軍事發(fā)展和交通等方面表現(xiàn)出了極為可觀的應(yīng)用前景并吸引了許多研究者。與此同時,水下浸沒的固體仿生表面對其實現(xiàn)減阻功能起著至關(guān)重要的作用,而界面的穩(wěn)定性直接影響界面的疏水和滑移性能。許多因素如沖擊、靜水壓力、流體流動等都容易引起超疏水界面失穩(wěn)。BICO等定性地說明了側(cè)壁結(jié)構(gòu)(突出的尖角)能夠釘扎液氣界面,有利于液氣界面保持穩(wěn)定。NOSONOVSKY從系統(tǒng)最小自由能出發(fā)揭示了液氣界面穩(wěn)定性判據(jù),提出了壁面多級多尺度微結(jié)構(gòu)有助于防止液氣界面失穩(wěn)。WHYMAN、BORMASHENKO從能量的角度說明了側(cè)壁次級微結(jié)構(gòu)能夠增大系統(tǒng)從Cassie-Baxter(CB)狀態(tài)向Wenzel(W)狀態(tài)的浸潤轉(zhuǎn)變的能量勢壘,為了維持超疏水特性,需要維持Cassie-Baxter狀態(tài)氣層的穩(wěn)定性,從而有效避免液氣界面失穩(wěn)。WU等基于熱力學原理提出液滴浸潤多級微結(jié)構(gòu)的理論模型,得到了側(cè)壁次級微結(jié)構(gòu)有助于增大液氣界面在壁面上的接觸角和增大系統(tǒng)浸潤轉(zhuǎn)變能量勢壘的結(jié)論。現(xiàn)有的這些工作表明界面穩(wěn)定性對界面的疏水和滑移性能起著至關(guān)重要的作用。然而,目前的研究尚不完善,在微觀方面缺乏研究,沒有從分子動力學方面對界面穩(wěn)定性展開詳細分析。
本文作者運用分子動力學模擬方法,采用透明質(zhì)酸溶液模擬仿生黏液,構(gòu)建不同質(zhì)量分數(shù)下仿生黏液體系的模型,考察仿生黏液體系與水相界面行為隨時間的變化規(guī)律;采用勢能函數(shù)模型,通過不同質(zhì)量分數(shù)仿生黏液-水界面張力和界面相互作用能等參數(shù)表征了不同質(zhì)量分數(shù)的透明質(zhì)酸仿生黏液對界面穩(wěn)定性的影響;同時考察了透明質(zhì)酸和水分子之間的相互作用的強弱關(guān)系,分析了質(zhì)量比為1∶10的體系中透明質(zhì)酸和水分子之間的徑向分布函數(shù)(RDF)。體系中水分子遷移越快,仿生黏液擁有更好的疏水性,文中還分析了不同質(zhì)量分數(shù)仿生黏液體系中水分子在透明質(zhì)酸周圍的均方位移(MSD),為設(shè)計多級微結(jié)構(gòu)表面仿生黏液-水界面穩(wěn)定性提供了思路。
模擬條件
分子力學方法首先通過計算分子各種可能構(gòu)象的勢能,得到分子勢能最低的構(gòu)象,即最穩(wěn)定的構(gòu)象,該過程被稱為能量最小化。該模型的結(jié)構(gòu)和能量最小化在Forcite模塊中進行,采用的都是Smart geometry optimization對初始結(jié)構(gòu)進行優(yōu)化。該優(yōu)化能夠較好地消除因搭建模型過程中可能造成的分子重疊、結(jié)構(gòu)不合理等引起的高能構(gòu)象,從而保證隨后的分子動力學模擬能夠正常運行。Smart geometry optimization采用最速下降法、共軛梯度法和牛頓法對體系進行優(yōu)化。對體系進行優(yōu)化后,在正則系綜(NVT)下進行了200 ps的分子動力學模擬,T=298 K,模擬步長設(shè)定為1 fs。采用Nose控溫法來控制溫度,范德華相互作用用Atom based方法計算,靜電相互作用用Ewald方法計算,截斷距離選為1.85 nm。系統(tǒng)達到平衡后,最后在平衡構(gòu)象的基礎(chǔ)上進行150 ps的等溫等壓系綜(NPT)分子動力學計算,記錄數(shù)據(jù)用作后續(xù)的結(jié)構(gòu)和動力學分析。
在計算界面張力時,首先對界面張力的初始模型進行優(yōu)化后,對其進行300 ps的NPT模擬,溫度取298 K,目標壓力為1.013 25×105Pa,壓力控制方法為Berendsen法控壓。然后對最后一幀進行200 ps的NVT分子動力學模擬,范德華相互作用(vdW)選用Atom based方法計算,靜電相互作用選用Ewald方法,然后提取x、y、z坐標軸方向的分壓,用于計算界面張力。
界面張力
分子動力學中認為界面張力與不同方向上的壓力張量有關(guān),仿生黏液透明質(zhì)酸體系-水的界面張力通過KIRKWOOD和BUFF提出的力學定義來進行計算。通過對5個不同質(zhì)量比的體系在平衡后200 ps的數(shù)據(jù)進行統(tǒng)計,得到了一個仿生黏液和水界面的界面張力平均結(jié)果,如圖1所示。可見在研究的質(zhì)量比范圍內(nèi),透明質(zhì)酸仿生黏液與水的界面張力始終保持在(60.00±10)mN/m左右,其中透明質(zhì)酸和水分子的質(zhì)量比接近1∶10時,界面張力最小(為61.33 mN/m)。仿生黏液和水界面的界面張力越小,體系中仿生黏液和水界面的自由能就越低,界面就較穩(wěn)定。因此,可以認為在研究的質(zhì)量比范圍內(nèi),質(zhì)量比1∶10時,模擬黏液-水的界面穩(wěn)定性最優(yōu)。這同時也證明,通過分子動力學模擬的方法可以初步預測仿生黏液在水體中的穩(wěn)定性。
圖1不同質(zhì)量比仿生黏液界面張力
結(jié)論
通過分子動力學模擬,研究了不同濃度仿生黏液-水界面的界面張力、界面相互作用能、均方位移(MSD)曲線和徑向分布函數(shù)(RDF)。結(jié)果表明,仿生黏液在透明質(zhì)酸分子和水分子在質(zhì)量比為1∶10時的界面張力最小為61.33 mN/m,得到的界面最穩(wěn)定。





